我曾经从运行的应用程序中确定以下性能参数:
代码必须在Windows和Linux上运行。 尽pipe这似乎是一个标准任务,但在手册(WIN32 API,GNU文档)以及Internet上find必要的信息花了我好几天,因为关于这个主题的信息太多不完整/不正确/过时在那里发现。
为了避免别人经历同样的麻烦,我认为把所有零散的信息加上我在这里试验发现的错误,是一个好主意。
上面的一些值很容易从适当的WIN32 API中获得,我只是在这里列出它们的完整性。 其他的则需要从绩效数据助手库(PDH)中获得,这个数据库有点“不直观”,需要经历很多痛苦的尝试和错误才能开始工作。 (至少我花了一段时间,也许我只是有点愚蠢…)
注意:为清楚起见,以下代码中省略了所有错误检查。 检查返回代码…!
总虚拟内存:
#include "windows.h" MEMORYSTATUSEX memInfo; memInfo.dwLength = sizeof(MEMORYSTATUSEX); GlobalMemoryStatusEx(&memInfo); DWORDLONG totalVirtualMem = memInfo.ullTotalPageFile;
注意:名称“TotalPageFile”在这里有点误导。 实际上这个参数给出了“虚拟内存大小”,它是交换文件的大小加上安装的RAM。
目前使用的虚拟内存:
与“Total Virtual Memory”中的代码相同
DWORDLONG virtualMemUsed = memInfo.ullTotalPageFile - memInfo.ullAvailPageFile;
当前进程当前使用的虚拟内存:
#include "windows.h" #include "psapi.h" PROCESS_MEMORY_COUNTERS_EX pmc; GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)); SIZE_T virtualMemUsedByMe = pmc.PrivateUsage;
总物理内存(RAM):
与“Total Virtual Memory”中的代码相同
DWORDLONG totalPhysMem = memInfo.ullTotalPhys;
目前使用的物理内存:
Same code as in "Total Virtual Memory" and then DWORDLONG physMemUsed = memInfo.ullTotalPhys - memInfo.ullAvailPhys;
当前进程使用的物理内存:
与“当前进程当前使用的虚拟内存”相同的代码
SIZE_T physMemUsedByMe = pmc.WorkingSetSize;
当前使用的CPU:
#include "TCHAR.h" #include "pdh.h" static PDH_HQUERY cpuQuery; static PDH_HCOUNTER cpuTotal; void init(){ PdhOpenQuery(NULL, NULL, &cpuQuery); // You can also use L"\\Processor(*)\\% Processor Time" and get individual CPU values with PdhGetFormattedCounterArray() PdhAddEnglishCounter(cpuQuery, L"\\Processor(_Total)\\% Processor Time", NULL, &cpuTotal); PdhCollectQueryData(cpuQuery); } double getCurrentValue(){ PDH_FMT_COUNTERVALUE counterVal; PdhCollectQueryData(cpuQuery); PdhGetFormattedCounterValue(cpuTotal, PDH_FMT_DOUBLE, NULL, &counterVal); return counterVal.doubleValue; }
目前进程当前使用的CPU:
#include "windows.h" static ULARGE_INTEGER lastCPU, lastSysCPU, lastUserCPU; static int numProcessors; static HANDLE self; void init(){ SYSTEM_INFO sysInfo; FILETIME ftime, fsys, fuser; GetSystemInfo(&sysInfo); numProcessors = sysInfo.dwNumberOfProcessors; GetSystemTimeAsFileTime(&ftime); memcpy(&lastCPU, &ftime, sizeof(FILETIME)); self = GetCurrentProcess(); GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser); memcpy(&lastSysCPU, &fsys, sizeof(FILETIME)); memcpy(&lastUserCPU, &fuser, sizeof(FILETIME)); } double getCurrentValue(){ FILETIME ftime, fsys, fuser; ULARGE_INTEGER now, sys, user; double percent; GetSystemTimeAsFileTime(&ftime); memcpy(&now, &ftime, sizeof(FILETIME)); GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser); memcpy(&sys, &fsys, sizeof(FILETIME)); memcpy(&user, &fuser, sizeof(FILETIME)); percent = (sys.QuadPart - lastSysCPU.QuadPart) + (user.QuadPart - lastUserCPU.QuadPart); percent /= (now.QuadPart - lastCPU.QuadPart); percent /= numProcessors; lastCPU = now; lastUserCPU = user; lastSysCPU = sys; return percent * 100; }
在Linux上,首先看起来很明显的选择是使用像getrusage()等POSIX API。我花了一些时间试图让这个工作,但从来没有得到有意义的价值。 当我终于自己检查了内核源代码后,发现显然这些API在Linux kernel 2.6中还没有完全实现!
最后,我通过读取伪文件系统/ proc和内核调用的组合来获得所有值。
总虚拟内存:
#include "sys/types.h" #include "sys/sysinfo.h" struct sysinfo memInfo; sysinfo (&memInfo); long long totalVirtualMem = memInfo.totalram; //Add other values in next statement to avoid int overflow on right hand side... totalVirtualMem += memInfo.totalswap; totalVirtualMem *= memInfo.mem_unit;
目前使用的虚拟内存:
与“Total Virtual Memory”中的代码相同
long long virtualMemUsed = memInfo.totalram - memInfo.freeram; //Add other values in next statement to avoid int overflow on right hand side... virtualMemUsed += memInfo.totalswap - memInfo.freeswap; virtualMemUsed *= memInfo.mem_unit;
当前进程当前使用的虚拟内存:
#include "stdlib.h" #include "stdio.h" #include "string.h" int parseLine(char* line){ // This assumes that a digit will be found and the line ends in " Kb". int i = strlen(line); const char* p = line; while (*p <'0' || *p > '9') p++; line[i-3] = '\0'; i = atoi(p); return i; } int getValue(){ //Note: this value is in KB! FILE* file = fopen("/proc/self/status", "r"); int result = -1; char line[128]; while (fgets(line, 128, file) != NULL){ if (strncmp(line, "VmSize:", 7) == 0){ result = parseLine(line); break; } } fclose(file); return result; }
总物理内存(RAM):
与“Total Virtual Memory”中的代码相同
long long totalPhysMem = memInfo.totalram; //Multiply in next statement to avoid int overflow on right hand side... totalPhysMem *= memInfo.mem_unit;
目前使用的物理内存:
与“Total Virtual Memory”中的代码相同
long long physMemUsed = memInfo.totalram - memInfo.freeram; //Multiply in next statement to avoid int overflow on right hand side... physMemUsed *= memInfo.mem_unit;
当前进程使用的物理内存:
在“当前进程当前使用的虚拟内存”中更改getValue()如下:
int getValue(){ //Note: this value is in KB! FILE* file = fopen("/proc/self/status", "r"); int result = -1; char line[128]; while (fgets(line, 128, file) != NULL){ if (strncmp(line, "VmRSS:", 6) == 0){ result = parseLine(line); break; } } fclose(file); return result; }
当前使用的CPU:
#include "stdlib.h" #include "stdio.h" #include "string.h" static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle; void init(){ FILE* file = fopen("/proc/stat", "r"); fscanf(file, "cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow, &lastTotalSys, &lastTotalIdle); fclose(file); } double getCurrentValue(){ double percent; FILE* file; unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total; file = fopen("/proc/stat", "r"); fscanf(file, "cpu %llu %llu %llu %llu", &totalUser, &totalUserLow, &totalSys, &totalIdle); fclose(file); if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow || totalSys < lastTotalSys || totalIdle < lastTotalIdle){ //Overflow detection. Just skip this value. percent = -1.0; } else{ total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) + (totalSys - lastTotalSys); percent = total; total += (totalIdle - lastTotalIdle); percent /= total; percent *= 100; } lastTotalUser = totalUser; lastTotalUserLow = totalUserLow; lastTotalSys = totalSys; lastTotalIdle = totalIdle; return percent; }
目前进程当前使用的CPU:
#include "stdlib.h" #include "stdio.h" #include "string.h" #include "sys/times.h" #include "sys/vtimes.h" static clock_t lastCPU, lastSysCPU, lastUserCPU; static int numProcessors; void init(){ FILE* file; struct tms timeSample; char line[128]; lastCPU = times(&timeSample); lastSysCPU = timeSample.tms_stime; lastUserCPU = timeSample.tms_utime; file = fopen("/proc/cpuinfo", "r"); numProcessors = 0; while(fgets(line, 128, file) != NULL){ if (strncmp(line, "processor", 9) == 0) numProcessors++; } fclose(file); } double getCurrentValue(){ struct tms timeSample; clock_t now; double percent; now = times(&timeSample); if (now <= lastCPU || timeSample.tms_stime < lastSysCPU || timeSample.tms_utime < lastUserCPU){ //Overflow detection. Just skip this value. percent = -1.0; } else{ percent = (timeSample.tms_stime - lastSysCPU) + (timeSample.tms_utime - lastUserCPU); percent /= (now - lastCPU); percent /= numProcessors; percent *= 100; } lastCPU = now; lastSysCPU = timeSample.tms_stime; lastUserCPU = timeSample.tms_utime; return percent; }
我假定,除了读取/ proc伪文件系统的部分,一些Linux代码也适用于Unix。 也许在Unix上这些部分可以用getrusage()和类似的函数来代替? 如果某个有Unix知识的人可以编辑这个答案并填写细节?!
我希望能为Mac OS X找到类似的信息。 既然不在这里,我就出去自己挖了。 这是我发现的一些事情。 如果有人有任何其他的建议,我很乐意听到他们。
这个在Mac OS X上很棘手,因为它不使用预设的交换分区或像Linux这样的文件。 以下是苹果公司的文档:
注意:与大多数基于Unix的操作系统不同,Mac OS X不使用预分配的虚拟内存交换分区。 而是使用机器引导分区上的所有可用空间。
因此,如果您想知道还有多少虚拟内存可用,则需要获取根分区的大小。 你可以这样做:
struct statfs stats; if (0 == statfs("/", &stats)) { myFreeSwap = (uint64_t)stats.f_bsize * stats.f_bfree; }
使用“vm.swapusage”键调用systcl提供了有关交换使用情况的有趣信息:
sysctl -n vm.swapusage vm.swapusage: total = 3072.00M used = 2511.78M free = 560.22M (encrypted)
不是说,如果需要更多的交换,在这里显示的交换使用总量可以改变,如上面的部分所述。 所以这个总额实际上是现在的掉期总额。 在C ++中,这个数据可以这样查询:
xsw_usage vmusage = {0}; size_t size = sizeof(vmusage); if( sysctlbyname("vm.swapusage", &vmusage, &size, NULL, 0)!=0 ) { perror( "unable to get swap usage by calling sysctlbyname(\"vm.swapusage\",...)" ); }
请注意,在sysctl.h中声明的“xsw_usage”似乎没有记录,我怀疑有一个更便携的方式来访问这些值。
您可以使用task_info
函数获取有关当前进程的统计信息。 这包括您的流程的当前常驻大小和当前虚拟大小。
#include<mach/mach.h> struct task_basic_info t_info; mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT; if (KERN_SUCCESS != task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count)) { return -1; } // resident size is in t_info.resident_size; // virtual size is in t_info.virtual_size;
系统中可用的物理RAM的数量可以通过使用sysctl
系统函数来获得,如下所示:
#include <sys/types.h> #include <sys/sysctl.h> ... int mib[2]; int64_t physical_memory; mib[0] = CTL_HW; mib[1] = HW_MEMSIZE; length = sizeof(int64_t); sysctl(mib, 2, &physical_memory, &length, NULL, 0);
您可以从host_statistics
系统函数获取一般内存统计信息。
#include <mach/vm_statistics.h> #include <mach/mach_types.h> #include <mach/mach_init.h> #include <mach/mach_host.h> int main(int argc, const char * argv[]) { vm_size_t page_size; mach_port_t mach_port; mach_msg_type_number_t count; vm_statistics64_data_t vm_stats; mach_port = mach_host_self(); count = sizeof(vm_stats) / sizeof(natural_t); if (KERN_SUCCESS == host_page_size(mach_port, &page_size) && KERN_SUCCESS == host_statistics64(mach_port, HOST_VM_INFO, (host_info64_t)&vm_stats, &count)) { long long free_memory = (int64_t)vm_stats.free_count * (int64_t)page_size; long long used_memory = ((int64_t)vm_stats.active_count + (int64_t)vm_stats.inactive_count + (int64_t)vm_stats.wire_count) * (int64_t)page_size; printf("free memory: %lld\nused memory: %lld\n", free_memory, used_memory); } return 0; }
有一点需要注意的是在Mac OS X中有五种类型的内存页面,如下所示:
值得注意的是,仅仅因为Mac OS X有时可能显示非常少的实际可用内存,可能并不能很好地指示在短时间内可以使用多少内存。
请参阅上面的“我的进程当前使用的虚拟内存”。 相同的代码适用。
在Linux中,这些信息在/ proc文件系统中可用。 我不是所使用的文本文件格式的忠实粉丝,因为每个Linux发行版似乎至少定制了一个重要的文件。 快速查看“ps”的来源显示了这个混乱。
但是,在这里可以找到您要查找的信息:
/ proc / meminfo包含您所寻求的大部分系统信息。 这里看起来像我的系统; 我想你对MemTotal , MemFree , SwapTotal和SwapFree感兴趣 :
Anderson cxc # more /proc/meminfo MemTotal: 4083948 kB MemFree: 2198520 kB Buffers: 82080 kB Cached: 1141460 kB SwapCached: 0 kB Active: 1137960 kB Inactive: 608588 kB HighTotal: 3276672 kB HighFree: 1607744 kB LowTotal: 807276 kB LowFree: 590776 kB SwapTotal: 2096440 kB SwapFree: 2096440 kB Dirty: 32 kB Writeback: 0 kB AnonPages: 523252 kB Mapped: 93560 kB Slab: 52880 kB SReclaimable: 24652 kB SUnreclaim: 28228 kB PageTables: 2284 kB NFS_Unstable: 0 kB Bounce: 0 kB CommitLimit: 4138412 kB Committed_AS: 1845072 kB VmallocTotal: 118776 kB VmallocUsed: 3964 kB VmallocChunk: 112860 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 Hugepagesize: 2048 kB
为了CPU利用率,你必须做一些工作。 Linux在系统启动后使整个CPU利用率可用; 这可能不是你感兴趣的。如果你想知道最近一秒或10秒的CPU利用率,那么你需要查询信息并自己计算。
这些信息可以在/ proc / stat中找到 ,在http://www.linuxhowtos.org/System/procstat.htm中有详细的记录 。 这里是我的4芯盒子上的样子:
Anderson cxc # more /proc/stat cpu 2329889 0 2364567 1063530460 9034 9463 96111 0 cpu0 572526 0 636532 265864398 2928 1621 6899 0 cpu1 590441 0 531079 265949732 4763 351 8522 0 cpu2 562983 0 645163 265796890 682 7490 71650 0 cpu3 603938 0 551790 265919440 660 0 9040 0 intr 37124247 ctxt 50795173133 btime 1218807985 processes 116889 procs_running 1 procs_blocked 0
首先,您需要确定系统中有多少个CPU(或处理器或处理内核)可用。 为此,请计算'cpuN'条目的数量,其中N从0开始并递增。 不要把“cpu”这一行,这是cpuN行的组合。 在我的例子中,你可以看到cpu0到cpu3,共有4个处理器。 从现在开始,你可以忽略cpu0..cpu3,只关注'cpu'行。
接下来,您需要知道这些行中的第四个数字是空闲时间的度量,因此“cpu”行上的第四个数字是自启动以来所有处理器的总空闲时间。 这个时间是在Linux的“jiffies”中测得的,每秒1/100。
但是你不关心总空闲时间, 你关心一段时间的空闲时间,例如最后一秒。 计算一下,你需要读取这个文件两次,相隔1秒。然后你可以做一个线的第四个值的差异。 例如,如果你拿一个样本,得到:
cpu 2330047 0 2365006 1063853632 9035 9463 96114 0
然后等一秒钟,你会得到这个样本:
cpu 2330047 0 2365007 1063854028 9035 9463 96114 0
减去两个数字,得到396的差异,这意味着你的CPU在最后1.00秒内已经空闲了3.96秒。 诀窍当然是,你需要除以处理器的数量。 3.96 / 4 = 0.99,有空闲的百分比; 99%空闲,1%忙碌。
在我的代码中,我有一个360个条目的环形缓冲区,我每秒钟读这个文件。 这可以让我快速计算CPU使用率1秒,10秒等等,一直到1小时。
对于特定于进程的信息,您必须查看/ proc / pid ; 如果你不关心你的pid,你可以看看/ proc / self。
你的进程使用的CPU在/ proc / self / stat中可用。 这是一个奇怪的文件,由单一行组成; 例如:
19340 (whatever) S 19115 19115 3084 34816 19115 4202752 118200 607 0 0 770 384 2 7 20 0 77 0 266764385 692477952 105074 4294967295 134512640 146462952 321468364 8 3214683328 4294960144 0 2147221247 268439552 1276 4294967295 0 0 17 0 0 0 0
这里的重要数据是第13和第14个标记(这里是0和770)。 第13个标记是进程在用户模式下执行的jiffies的数量,第14个是进程在内核模式下执行的jiffies的数量。 把两者加在一起,你就可以得到CPU的总利用率。
同样,您将不得不定期对这个文件进行采样,并计算diff,以便确定进程的CPU使用率。
编辑:记住当你计算你的进程的CPU利用率时,你必须考虑到1)进程中的线程数量,2)系统中的处理器数量。 例如,如果您的单线程进程只使用25%的CPU,那么可能是好的或坏的。 擅长单处理器系统,但在4处理器系统上不好; 这意味着您的进程不断运行,并使用100%的可用CPU周期。
对于特定于进程的内存信息,你可以看看/ proc / self / status,它看起来像这样:
Name: whatever State: S (sleeping) Tgid: 19340 Pid: 19340 PPid: 19115 TracerPid: 0 Uid: 0 0 0 0 Gid: 0 0 0 0 FDSize: 256 Groups: 0 1 2 3 4 6 10 11 20 26 27 VmPeak: 676252 kB VmSize: 651352 kB VmLck: 0 kB VmHWM: 420300 kB VmRSS: 420296 kB VmData: 581028 kB VmStk: 112 kB VmExe: 11672 kB VmLib: 76608 kB VmPTE: 1244 kB Threads: 77 SigQ: 0/36864 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: fffffffe7ffbfeff SigIgn: 0000000010001000 SigCgt: 20000001800004fc CapInh: 0000000000000000 CapPrm: 00000000ffffffff CapEff: 00000000fffffeff Cpus_allowed: 0f Mems_allowed: 1 voluntary_ctxt_switches: 6518 nonvoluntary_ctxt_switches: 6598
以'Vm'开始的条目是有趣的:
我不确定的唯一项目是我的进程当前使用的Swapspace 。 我不知道这是否可用。
在Windows中,您可以通过代码获取cpu使用情况:
#include <windows.h> #include <stdio.h> //------------------------------------------------------------------------------------------------------------------ // Prototype(s)... //------------------------------------------------------------------------------------------------------------------ CHAR cpuusage(void); //----------------------------------------------------- typedef BOOL ( __stdcall * pfnGetSystemTimes)( LPFILETIME lpIdleTime, LPFILETIME lpcoreelTime, LPFILETIME lpUserTime ); static pfnGetSystemTimes s_pfnGetSystemTimes = NULL; static HMODULE s_hcoreel = NULL; //----------------------------------------------------- void GetSystemTimesAddress() { if( s_hcoreel == NULL ) { s_hcoreel = LoadLibrary( L"coreel32.dll" ); if( s_hcoreel != NULL ) { s_pfnGetSystemTimes = (pfnGetSystemTimes)GetProcAddress( s_hcoreel, "GetSystemTimes" ); if( s_pfnGetSystemTimes == NULL ) { FreeLibrary( s_hcoreel ); s_hcoreel = NULL; } } } } //---------------------------------------------------------------------------------------------------------------- //---------------------------------------------------------------------------------------------------------------- // cpuusage(void) // ============== // Return a CHAR value in the range 0 - 100 representing actual CPU usage in percent. //---------------------------------------------------------------------------------------------------------------- CHAR cpuusage() { FILETIME ft_sys_idle; FILETIME ft_sys_kernel; FILETIME ft_sys_user; ULARGE_INTEGER ul_sys_idle; ULARGE_INTEGER ul_sys_kernel; ULARGE_INTEGER ul_sys_user; static ULARGE_INTEGER ul_sys_idle_old; static ULARGE_INTEGER ul_sys_kernel_old; static ULARGE_INTEGER ul_sys_user_old; CHAR usage = 0; // we cannot directly use GetSystemTimes on C language /* add this line :: pfnGetSystemTimes */ s_pfnGetSystemTimes(&ft_sys_idle, /* System idle time */ &ft_sys_kernel, /* system kernel time */ &ft_sys_user); /* System user time */ CopyMemory(&ul_sys_idle , &ft_sys_idle , sizeof(FILETIME)); // Could been optimized away... CopyMemory(&ul_sys_kernel, &ft_sys_kernel, sizeof(FILETIME)); // Could been optimized away... CopyMemory(&ul_sys_user , &ft_sys_user , sizeof(FILETIME)); // Could been optimized away... usage = ( ( ( ( (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+ (ul_sys_user.QuadPart - ul_sys_user_old.QuadPart) ) - (ul_sys_idle.QuadPart-ul_sys_idle_old.QuadPart) ) * (100) ) / ( (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+ (ul_sys_user.QuadPart - ul_sys_user_old.QuadPart) ) ); ul_sys_idle_old.QuadPart = ul_sys_idle.QuadPart; ul_sys_user_old.QuadPart = ul_sys_user.QuadPart; ul_sys_kernel_old.QuadPart = ul_sys_kernel.QuadPart; return usage; } //------------------------------------------------------------------------------------------------------------------ // Entry point //------------------------------------------------------------------------------------------------------------------ int main(void) { int n; GetSystemTimesAddress(); for(n=0;n<20;n++) { printf("CPU Usage: %3d%%\r",cpuusage()); Sleep(2000); } printf("\n"); return 0; }
读取内存和加载数字的便携方式是sysinfo
调用
#include <sys/sysinfo.h> int sysinfo(struct sysinfo *info);
Until Linux 2.3.16, sysinfo() used to return information in the following structure: struct sysinfo { long uptime; /* Seconds since boot */ unsigned long loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long totalram; /* Total usable main memory size */ unsigned long freeram; /* Available memory size */ unsigned long sharedram; /* Amount of shared memory */ unsigned long bufferram; /* Memory used by buffers */ unsigned long totalswap; /* Total swap space size */ unsigned long freeswap; /* swap space still available */ unsigned short procs; /* Number of current processes */ char _f[22]; /* Pads structure to 64 bytes */ }; and the sizes were given in bytes. Since Linux 2.3.23 (i386), 2.3.48 (all architectures) the structure is: struct sysinfo { long uptime; /* Seconds since boot */ unsigned long loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long totalram; /* Total usable main memory size */ unsigned long freeram; /* Available memory size */ unsigned long sharedram; /* Amount of shared memory */ unsigned long bufferram; /* Memory used by buffers */ unsigned long totalswap; /* Total swap space size */ unsigned long freeswap; /* swap space still available */ unsigned short procs; /* Number of current processes */ unsigned long totalhigh; /* Total high memory size */ unsigned long freehigh; /* Available high memory size */ unsigned int mem_unit; /* Memory unit size in bytes */ char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding to 64 bytes */ }; and the sizes are given as multiples of mem_unit bytes.
由于这就像一个“代码维基”,我想添加一些来自QNX知识库的代码(注意:这不是我的工作,但我检查了它,它在我的系统上工作正常):
如何获取CPU使用率: http : //www.qnx.com/support/knowledgebase.html?id=50130000000P9b5
#include <atomic.h> #include <libc.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/iofunc.h> #include <sys/neutrino.h> #include <sys/resmgr.h> #include <sys/syspage.h> #include <unistd.h> #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/debug.h> #include <sys/procfs.h> #include <sys/syspage.h> #include <sys/neutrino.h> #include <sys/time.h> #include <time.h> #include <fcntl.h> #include <devctl.h> #include <errno.h> #define MAX_CPUS 32 static float Loads[MAX_CPUS]; static _uint64 LastSutime[MAX_CPUS]; static _uint64 LastNsec[MAX_CPUS]; static int ProcFd = -1; static int NumCpus = 0; int find_ncpus(void) { return NumCpus; } int get_cpu(int cpu) { int ret; ret = (int)Loads[ cpu % MAX_CPUS ]; ret = max(0,ret); ret = min(100,ret); return( ret ); } static _uint64 nanoseconds( void ) { _uint64 sec, usec; struct timeval tval; gettimeofday( &tval, NULL ); sec = tval.tv_sec; usec = tval.tv_usec; return( ( ( sec * 1000000 ) + usec ) * 1000 ); } int sample_cpus( void ) { int i; debug_thread_t debug_data; _uint64 current_nsec, sutime_delta, time_delta; memset( &debug_data, 0, sizeof( debug_data ) ); for( i=0; i<NumCpus; i++ ) { /* Get the sutime of the idle thread #i+1 */ debug_data.tid = i + 1; devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL ); /* Get the current time */ current_nsec = nanoseconds(); /* Get the deltas between now and the last samples */ sutime_delta = debug_data.sutime - LastSutime[i]; time_delta = current_nsec - LastNsec[i]; /* Figure out the load */ Loads[i] = 100.0 - ( (float)( sutime_delta * 100 ) / (float)time_delta ); /* Flat out strange rounding issues. */ if( Loads[i] < 0 ) { Loads[i] = 0; } /* Keep these for reference in the next cycle */ LastNsec[i] = current_nsec; LastSutime[i] = debug_data.sutime; } return EOK; } int init_cpu( void ) { int i; debug_thread_t debug_data; memset( &debug_data, 0, sizeof( debug_data ) ); /* Open a connection to proc to talk over.*/ ProcFd = open( "/proc/1/as", O_RDONLY ); if( ProcFd == -1 ) { fprintf( stderr, "pload: Unable to access procnto: %s\n",strerror( errno ) ); fflush( stderr ); return -1; } i = fcntl(ProcFd,F_GETFD); if(i != -1){ i |= FD_CLOEXEC; if(fcntl(ProcFd,F_SETFD,i) != -1){ /* Grab this value */ NumCpus = _syspage_ptr->num_cpu; /* Get a starting point for the comparisons */ for( i=0; i<NumCpus; i++ ) { /* * the sutime of idle thread is how much * time that thread has been using, we can compare this * against how much time has passed to get an idea of the * load on the system. */ debug_data.tid = i + 1; devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL ); LastSutime[i] = debug_data.sutime; LastNsec[i] = nanoseconds(); } return(EOK); } } close(ProcFd); return(-1); } void close_cpu(void){ if(ProcFd != -1){ close(ProcFd); ProcFd = -1; } } int main(int argc, char* argv[]){ int i,j; init_cpu(); printf("System has: %d CPUs\n", NumCpus); for(i=0; i<20; i++) { sample_cpus(); for(j=0; j<NumCpus;j++) printf("CPU #%d: %f\n", j, Loads[j]); sleep(1); } close_cpu(); }
如何获得免费(!)内存: http : //www.qnx.com/support/knowledgebase.html?id=50130000000mlbx
#include <stdio.h> #include <stdlib.h> #include <errno.h> #include <err.h> #include <sys/stat.h> #include <sys/types.h> int main( int argc, char *argv[] ){ struct stat statbuf; paddr_t freemem; stat( "/proc", &statbuf ); freemem = (paddr_t)statbuf.st_size; printf( "Free memory: %d bytes\n", freemem ); printf( "Free memory: %d KB\n", freemem / 1024 ); printf( "Free memory: %d MB\n", freemem / ( 1024 * 1024 ) ); return 0; }
我在我的C ++项目中使用下面的代码,它工作正常:
static HANDLE self; static int numProcessors; SYSTEM_INFO sysInfo; double percent; numProcessors = sysInfo.dwNumberOfProcessors; //Getting system times information FILETIME SysidleTime; FILETIME SyskernelTime; FILETIME SysuserTime; ULARGE_INTEGER SyskernelTimeInt, SysuserTimeInt; GetSystemTimes(&SysidleTime, &SyskernelTime, &SysuserTime); memcpy(&SyskernelTimeInt, &SyskernelTime, sizeof(FILETIME)); memcpy(&SysuserTimeInt, &SysuserTime, sizeof(FILETIME)); __int64 denomenator = SysuserTimeInt.QuadPart + SyskernelTimeInt.QuadPart; //Getting process times information FILETIME ProccreationTime, ProcexitTime, ProccoreelTime, ProcUserTime; ULARGE_INTEGER ProccreationTimeInt, ProcexitTimeInt, ProccoreelTimeInt, ProcUserTimeInt; GetProcessTimes(self, &ProccreationTime, &ProcexitTime, &ProccoreelTime, &ProcUserTime); memcpy(&ProccoreelTimeInt, &ProccoreelTime, sizeof(FILETIME)); memcpy(&ProcUserTimeInt, &ProcUserTime, sizeof(FILETIME)); __int64 numerator = ProcUserTimeInt.QuadPart + ProccoreelTimeInt.QuadPart; //QuadPart represents a 64-bit signed integer (ULARGE_INTEGER) percent = 100*(numerator/denomenator);
对于Linux您也可以使用/ proc / self / statm来获取包含关键进程内存信息的一行数字,这比从proc / self / status获得的一长串报告信息要快得多
见http://man7.org/linux/man-pages/man5/proc.5.html
/proc/[pid]/statm Provides information about memory usage, measured in pages. The columns are: size (1) total program size (same as VmSize in /proc/[pid]/status) resident (2) resident set size (same as VmRSS in /proc/[pid]/status) shared (3) number of resident shared pages (ie, backed by a file) (same as RssFile+RssShmem in /proc/[pid]/status) text (4) text (code) lib (5) library (unused since Linux 2.6; always 0) data (6) data + stack dt (7) dirty pages (unused since Linux 2.6; always 0)